
Circuit Design Tool
User's Manual I

Keith M. Miyake

Donald E. Smith

LCSR-TR-191 Revision 2

Laboratory for Computer Science Research

Computing Research and Education Building

Busch Campus, Rutgers University

New Brunswick, New Jersey 08903

October 1992

1This work was supported by the Defense Advanced Research Projects Agency and the National

Aeronautics and Space Administration under NASA-Ames Research Center grant NAG 2-668.

Contents

Introduction 1

1.1 Circuit Definition 2

1.2 Model Creation 2

The

2.1

2.2

2.3

2.4

2.5

2.6

Definition Language 4

Syntax Conventions 4

Variables and Assignment 5

Expressions 6

Naming Conventions 7

Cable Definitions 9

Module Definitions 11

3 Command Syntax 19

3.1 Filenames 19

3.2 Current Generated Module 19

3.3 Current Submodule 20

3.4 Parent Constructor 20

3.5 Command Naming 20

3.6 Design Tool Commands 22

4 Implementation Details 31

4.1 Primitive Modules 31

4.2 Simulation Construction 31

4.3 Bus Signals 32

4.4 Simulation Events 32

4.5 Simulation Runs 32

5 Startup Options 34

5.1 Command-lineArguments 34

5.2 simrc File 35

A The Lexer 37

B Primitive Modules 41

C Module Examples 47

D Error Messages 51

ii

Chapter 1

Introduction

-7

The CAM chip design has been produced in a UNIX software environment using a design

tool that supports definition of digital electronic modules, composition of these modules into

higher level circuits, and event-driven simulation of these circuits. Our design tool provides

an interface whose goals include str_ghtforward but flexible primitive module definition and

circuit composition, efficient simulation, and a debugging environment that facilitates design
verification and alteration.

The tool provides a set of primitive modules which can be composed into higher level

circuits. Each module is a C-language subroutine that uses a set of interface protocols

understood by the design tool. Primitives can be altered simply by recoding their C-code

image; in addition new primitives can be added allowing higher level circuits to be described

in C-code rather than as a composition of primitive modules - this feature can greatly enhance

the speed of simulation 1.

Effective composition of primitive modules into higher level circuits is essential to our

design task. Not only are the standard features of a description language required but in

addition, features such as recursive descriptions of circuit composition, parameterized module

descriptions, and strongly-typed port types are essential to efficient circuit design. These

features are supported by our design tool's composition language which allows the user to

specify a hardware description in a C-like syntax. Parameterized modules, recursive and

iterative descriptions, macro-like capability to describe collections of wires (i.e., cables), and

decision making support that allows context sensitive module expansion are provided by

our tool. In addition, our tool can determine the cost of a circuit based on the costs of its

primitive modules. This feature is not exact but does provide a good approximation of the

complexity of the designed circuit.

Simulation is performed by an event-driven simulator that handles gates as well as tri-

state bi-directional busses and provides the user not only with a view of what a circuit is

computing but also control over the circuit so that design flaws can be effectively isolated

1Converting a higher-level circuit into a primitive module is straightforward when the timing of the

primitive module need not be identical to the higher level circuit. Higher level circuits can be converted to

primitive modules with identical time performance; however, the conversion process is much more complex.

and corrected. The simulator is controlled with a command language which allows the user

to see a wire or set of wires, as well as change the values on wires. Operations can be done

immediately (i.e., at the time the user enters them) or scheduled to take place at a specified

time. Simulations can be run for a specific period of time or until a certain condition is

detected in the hardware. They can be controlled fl'om the keyboard or indirectly from a

file.

The design tool consists of two main parts: the command and definition languages. The

definition language is used to read circuit definitions. The command language controls the

actions of the simulator. These topics are detailed in sections 2.5 and 2.6.

Following is a brief introduction on the definition and creation of circuit models. It

defines many terms used later.

1.1 Circuit Definition

The circuit definition language describes connections between primitive objects. These ob-

jects, called primitive modules, have functionality predefined in the design tool. Primitive

modules have a special set of entry points which are connected when forming the circuit

model. These entry points are called ports and the connections between them are referred to

as signals or wires. There is a causality between connected modules. Execution of a module

may affect modules connected to it.

The design tool reads descriptions using a definition language. The language consists of

two types of object definitions: module and cable. Cable definitions group related signals

together. Module definitions specify primitive modules and their connections. A module may

define other modules as children of itself, and specify connections between its child modules.

In this case the module is referred to as a composite module.

The circuit is built from a set of hierarchical module and cable definitions. Flattening

the hierarchy produces the basic model of a set of primitive modules connected by wires.

In order to name objects in the hierarchical design, hierarchical names are used by the

design tool. These names specify objects which cannot be directly referenced within the

current context. This is done by supplying a list of names specifying a path to the object.

Each field in the composite name is separated by the dot character '. '.

1.2 Model Creation

The creation of a circuit model is performed in phases.

When a cable or module defhfition is read, its syntax is checked and the definition is stored

as a master definition. These definitions may have input arguments which need assignment.

When a module is created, input arguments to master definitions are assigned resulting in

a new definition type. These definitions, which have specific input arguments, are referred to

as definition instances. Each definition instance is fully examined, checking the consistency

of the connections made and the referenced modules.

The circuit model is made from these definition instances. The model is designed for

speed in simulating the functionality of tl_e circuit and contains all structures necessary for

simulation. Such a model is called a generated raod'ule or sim_,Iation instance.

Chapter 2

The Definition Language

The definition language is used to describe digital electronic circuits by building hierarchical

structures connecting primitive modules. A definition file consists of a sequence of module

and cable definitions. Modules come in two types: primitive and composite.

Primitive modules are the basic building blocks of the definition language. These objects

perform operations defined by C functions which have been precompiled into the design tool.

A list of primitive modules is given in appendix B.

A composite module definition defines submodules of itself and connections to be made

among their ports, as well as its own ports. Attaching submodule ports causes interactions

between the operations of the respective modules.

Cable definitions allow signals to be identified in groups, which simplifies connection of

ports.

Module and cable definitions are similar in structure and are analogous to functions in

a conventional programming language. They may have formal input arguments and may

use other definitions (as well as their own) recursively. Termination of such recursion is not
assured.

2.1 Syntax Conventions

The language syntax descriptions used in this manual is a variant of the Backus-Naur form.

Following is a list of syntax rules:

1. Boldface type denotes reserved words.

2. Lowercase words, which may have embedded underscores, denote syntactic constructs.

3. Character tokens are shown using typewriter type. Most punctuation characters are

used as character tokens, with exceptions stated below. Note that the exceptions are

printed in Roman type.

4

4. The vertical bar 'l' separates alternate syntax items when it is used at the beginning

of a line.

5. Square brackets ('[', ']') enclose optional items.

6. The dollar sign '$' in a syntax rule denotes the remainder of the line as a comment.

'$' is not used in the syntax.

2.2 Variables and Assignment

A variable is a name associated with an integer value in a module or cable definition. Vari-

ables have no meaning outside the current definition. A variable name may be any valid

string token (quoted or unquoted; see appendix A). There are no arrays of variables. A

variable may have the same name as signals, modules, or cables since its context is distinct.

There are three variable types: input, loop, and assignment. Within a specific definition, a

variable may be used as only one type.

Input Variables

Input variables are arguments to a module or cable definition. They are determined at

invocation and may not be reassigned within the current object. These variables are valid

throughout the current object. Each input variable of a definition must be given a value

upon use.

Loop Variables

Loop variables are used in for loops in the component section of modules. Each for loop

controls the assignment of a single loop variable. Loop variables are only valid within the

controlling loop, and may not be reassigned within the loop.

Assignment Variables

Assignment variables are used in the component section of modules. They are set using the

assign statement (string_token <- arith_expr ;). This assigns the current value of the

expression to the variable. Once a variable has been assigned to, it is valid until the end

of the module. Each subsequent use of the variable gets the assignment value unless the

variable has been reassigned. Assignment variables may not be reused as loop variables.

Control flow variations resulting from if statements or loops may allow an assignment

variable to be referenced prior to assignment.

Cables only have input variables since they have no component section.

5

2.3 Expressions

Expressions are used in various ways to control the assembly of modules. There are two types

of expressions: arithmetic and logical. Arithmetic expressions result in integer values. Logical

expressions return one of the values TRUE or FALSE. Arithmetic and logical expressions

are not interchangeable.

Arithmetic Expressions

Arithmetic expressions compute integer values. They may be string tokens (variables),

numeric tokens (constants), or may be created by application of an arithmetic operator

to one or more arithmetic expressions.

arith_expr :=

string_token
numericAoken

- arith_expr

(arith_expr)

arith_expr * arith_expr

arith_expr / arith_expr

arith_expr Z arith_expr

arith_expr + arith_expr

arith_expr - arith_expr

$ variable value

$ constant value

$ arithmetic negation

$ arithmetic grouping

$ multiplication
$ division

$ modulus

$ addition

$ subtraction

Division operations return a truncated result (using C convention), since integer division
is not exact.

There are three levels of arithmetic operator precedence. Unary operators (negation and

grouping) share the highest precedence. Multiplication, division, and modulus (*,/, X) have

equal precedence, below that of the unary operators. Addition and subtraction (+, -) share

the lowest precedence.

All binary arithmetic operators associate left-to-right.

Logical Expressions

Logical expressions compute the value TRUE or FALSE. They are constructed by the use

of relational or logical operators. Relational operators produce a logical expression based on

the validity of a relational query between two arithmetic expressions. Logical operators use

one or two logical expressions to produce a single logical expression. There are no logical
variables or constants.

6

log_expr:=
arith_expr > arith_expr

arith_expr >---arith_expr
$ greater than
$ greater than or equal to

arith_expr < arith_expr $ lessthan
arith_expr <---arith_expr $ less than or equal to

arith_expr = arith_expr $ equal to

arith_expr ! arith_expr $ not equM to

" log_expr $ logical negation

{ log_expr } $ logical grouping

log_expr a log_expr $ logical AND

log_expr] log_expr $ logical OR

Note that the vertical bar in the logicM OR represents the character ' I'.

The use of arithmetic expressions as operands eliminates precedence or associativity with

regard to relational operators.

There are three levels of logical operator precedence. Unary logical operators (negation

and grouping) have the highest precedence, followed by logical AND. Logical OR has the

lowest precedence of logical operators.

Logical grouping syntax is distinct from that of arithmetic grouping. This reinforces the

idea of noncompatibility between expression types.

2.4 Naming Conventions

Each child object (signal, cable, or submodule) in a definition must be given a unique name.

This allows unambiguous signal naming within simulation instances (for design verification).

Names of child objects must be string tokens (quoted or unquoted).

An object name may have a single associated array index. This index is specified by

an arithmetic expression enclosed in square brackets following the name. The string token,

excluding the array index, is called the root name of the object.

object__uame :=

string_token

] string_token [arith_expr]

Note that the square brackets do not represent optional arguments.

Example:

The root name of an object "a[5]" is simply "a".

It is often useful to name lists of objects. In this case, a modified array notation, called

an object list, may be used to specify a range of array indices. This is done by supplying

a start and end index for the array, separated by a colon ' :'. The notation is equivalent to

supplying each object name in order, beginning with the start index, and iterating until the

7

end index is reached. If the stai_t index is less than the end index iteration increments by

one, otherwise it decrements by one.

object_list :=

string_token [arith_cxpr : arith_expr]

Note that the square brackets do not represent optional arguments.

Example:

"a[1:2]"
"a[2:1]"

expanas to "a[1]" "a[e]".
expands to "a[2]" "a[l]".

A list of objects may contain single object names and object lists.

objectmameAist :=

object_name

] objectAist

[object..name object..nameAist

[objectAist objectmameAist

In a module definition, each internal subcomponent or signal must have a distinct name

(root name and index). Also, objects with the same root name must have similar types.

This means that signals, components and cables may not share root names. Furthermore,

components or cables which share a root name must share the same master definition. These

checks are performed during the creation of module definition instances.

It is often necessary to name an object which cannot be directly referenced from the

current level. In this case a composite name is used, using the dot character ' ' to separate

levels. This is referred to as a hierarchical name.

hierarchical..name :=

object..name

[object..name . hierarchical.name

Example:

The hierarchical name "a.b" refers to an object "b" which is a child of object

"a", where "a" is a child of the current module.

Hierarchical nanfing may be used with array expansion, in which case rightmost indices

are expanded first.

hierarchical.list :=

object_name

[objectAist

[object__name . hierarchicalAist

[objectAist . hierarchicalAist

Example:

"a[:t:2].b[3:4]" expands to "a[1].b[3]" ",_[1].b[4]" "a[2].b[3]" "a[2].b[4]".

8

The hierarchical analog to an object name list, called a hierarchical list, may now be

defined. Note that every hierarchical name is also a hierarchical list.

hierarchicalmameAist :=

hierarchical_list

]hierarchical_list hierarchicalJlame.list

2.5 Cable Definitions

A cable represents an ordered list of signals, each signal having an associated type. Signal

typing is used to ensure that the use of a module is consistent with its definition.

cable_definition :=

cable string_token [(variable_list)] typed_signal_list end

variable_list :=

string_token

I string_token , variableAist

typed.signalJist :=

signal_.nameJist signal_type

] signal_nameAist signal_type typed_signalJist

signal_name.list :=

objectllameJist

I cable_use

I object..nameJist signal_name_list

[cable_use signal_namelist

signal_type :=

input

I output

I inout

The string token following cable is the cable name. This name is used for future refer-

ences to the cable. The variable list is a list of input variables for the cable. When the cable

is used, each input variable must be given a value. The typed signal list is a list of the wires

which comprise the cable. It may include cables uses, which is defined below. Each signal

is given one of three allowable types: input, output, or inout. The meaning of the types
will be described in section 2.6.

Example:

cable cl

sl s2 input

s3 output
s4 inout

end

9

In the example,signals "sl" and "s2" areboth input.

After a cablehasbeendefined,it may beusedanywherethat a signal may be used. This

includes being used in other cable definitions. The following syntax defines a name as a use
of a cable.

cable_use :=

cable string_token [(argument_list)] object_name

I cable string_token [(argument_list)] { object_name_list }

argument_list :=

arith_expr

] arith_expr , argument_list

The string token following cable is the name of a cable definition. The argument list

given must be exactly the same size as the number of input variables to the cable definition.

Following the arguments is the list of new cable instance names.

Example:

cable cl cil

cable cl { ci2 ci3 }

The first use defines a single instance "cil" of cable "cl". The second use defines

two additional instances, "ci2" and "ci3", of cable "c1".

When a cable is used in another cable definition, the type of the resultant signal depends

on both the signal type given in the previous definition, and the type given to the cable use.

The following matrix shows the retyping rules:

cable type subsignal type

input

output
inout

input output inout

input output inout

output input inout
inout inout inout

After a cable instance has been defined, each use of the instance name represents the

list of its component signals in order. Each signal name in the list is a hierarchical name

consisting of the cable instance name and the component signal name. Individual signals

within the cable may be accessed by naming the signals hierarchically.

Example:

cable c2

s 1 input

s2 output
end

10

cable c3

cable c2 scl input

cable c2 sc2 output

cable c2 sc3 inout

end

In cable "c3", signal "scl.sl" would be input and "scl.s2" would be output.

Because of retyping, signal "sc2.sl" would be output while "sc2.s2" would be

input. Both subsignals of "sc3" would be inout.

Example:

If we make a instance "ci4" of the cable type "cl", individual signals may be

referenced as "ci4.sl", "ci4.s2", "ci4.s3", and "ci4.s4". This set of signals, in

order, can be referenced simply as "ci4".

Cable definitions may use other cable definitions, including those which are not yet

defined (forward referencing). There is no check for recursive cable references, which do not
terminate.

2.6 Module Definitions

Two types of modules (primitive and composite) are used in circuit designs. Primitive mod-

ules are objects with predefined flmctions. Composite modules define connections between

primitive and composite modules.

module_definition :=

module string_token [(variable_list)][cost_section]

[port.section] [signal_section][component_section] end

The string token following module is the module name. This name is used to reference

the module in future use. As with cable definitions, when a module is used each input

variable must be given a value.

Additional module examples are given in appendix C.

Cost section

The cost section is used to estimate the relative expense of building modules using several

technologies. Each module definition instance has associated cost values. These costs may

be explicitly defined in the cost section, or may be implicitly defined as the sums of the

costs of its submodules. Primitive modules should define explicit costs with a cost section.

11

Composite modules should include a cost section if the hardware implementation of the
moduledoesnot correspondto the functional model representedby its subcomponents.

cost_section:=
costs cost_pairAist

cost_pairAist:=
cost_pair
I cost_pair cost_pair_list

cost_pair :=

nmos : arith_expr

I cmos : arith_expr

I gateInput : arith_expr

Currently there are three cost criteria: nmos, cmos, and gatelnput. If a technology

cost is given more than once, the last cost pair is used.

Example:

module ml (vl)

costs

nmos :

cmo s :

end

2*vl

10

gateInput: 20

Port section

The port section is an ordered list of the external connections of the current module. Ports

are special signals which are used to connect to the module in later uses. A module with no

ports cannot be referenced by another module. The order of port signals is important and

determines proper connection of the module.

port_section :=

ports typed_signal_list

The typed signal list is the same as used in cable definitions, with the same subsignal

retyping rules.

Type information defines the proper use of the signal in the module and what connections

are allowed if the module is referenced by a composite module.

input implies that the signal is generated from an external source.

output implies that the signal is generated within the current module.

inout does not state the source of the signal. It causes the signal to be a

(bi-directional) bus, which must be driven by tri-state drivers.

12

The following rules governvalid connectionsto eachtype of port signalwithin the current
module:

input: No output signal may be connected to the signal. At least one primitive descendent

module must use the signal as an input.

output: At least one primitive descendent module must use the signal as an output.

inout: At least one primitive descendent module nmst use the signal as an input or output.

Additionally, every connected output must be a a tri-state driver (the signal is a bus).

Missing or inconsistently typed signal connections are reported upon creation of module
definition instances.

Example:

module m2

port s

pl input

p2 output

p3 inout

end

Signal section

The signal section defines internal signals of the current module. These internal signals must

be distinct from port signals and may not be referenced by other modules. Every signal used

in a module definition must be defined in either the port or signal section. The order in

which internal signals are defined is not important.

signal_section :=

signal signal..name_list

Each signal defined in tile signal section is given a special type of internal. If a cable

use is defined in this section, all resulting signals are also typed as internal.

The internal type means that the signal is both generated and used by primitive de-
scendents of the current module.

Example:

module mS

signals

sl s2 s3

end

13

Component Section

The component section determines how composite module are built from other modules.

This is accomplished by 'executing' component statements in order, similar to conventional

programming languages. Primitive modules, whose functions are defined by C code, do not

use their component sections.

component_.section :=

components component_statement..list

component_statement_list :=

component_statement

] component_strut component_statement..list

component_statement :=
ubmodule_.statement

assign_statement

join_statement
error_statement

grouping._statement
if..statement

for.statement

while_statement

break_statement

$ declare a child module

$ assign a value to a variable

$ create a link between a group of signals

$ print an error message

$ group multiple statements

$ execute statements conditionally

$ execute a statement loop iteratively

$ execute a statement loop conditionally

$ exit from loops

Submodule Statement

Submodule declares a module as a child of the current module. It also designates attach-

ment of signals to the ports of the child module.

submodule_statement :=

object_name string_token [(argument..list)] hierarchical_.name..list ;

The initial object name is the local name given to the submodule. This name is used to

refer to the child module within the current module. Specifially, it is used in hierarchical

naming. The next string token is the name of a module definition. The number of arguments

given must match the number of input variables of the module definition. Next is a llst of

signals to be attached to the ports of the child module. Because every signal must be

declared in the port or signal section, references to cables use hierarchical names (and not

cable uses). Each signal in this list will be connected to the corresponding port of the

previously defined module in order. The signal list must be the same size as the number of

ports of the previously defined module. The port and connecting signal must conform, using

the rules stated under the port section.

Example:

module m4

port s

14

m4i input

m4o output

signals

icl

end

module m5

ports

m5i input

m5o output

components

scl m4 m5i m5o;

end

In the example, module "m5" defines a child module of type "m4" and gives it

the local name "sel". The hierarchical name which refers to the signal "icl" in

"m4" is "m5.sclicl". Note that the ports of "m4" and the connecting signals in

"m5" correspond in type.

Assign Statement

Assign associates an integer value with a variable. The target of assign may be any unused

variable name, or an assignment variable. Execution of assign causes the expression value

to be computed and assigned to the variable.

assign_statement :=

string_token <- arith_expr ;

The string token names the variable to be assigned.

Example:

module m6

components

vl <- 2;

v2 <- vl

vl <- 1;

end

*2;

The first assign creates a new variable "vl" with a value of 2. The second creates

"v2" and uses "vl" to compute "v2" as 2*2 = 4. The fina/assign changes "vl"

to 1, but does not affect "v2".

Join Statement

Join merges a set of signals to form a single signal. After a join has been completed, any

15

member canbe usedto representthe setin other componentstatements(including joins).

Every signalusedin a join must be declaredin the port or signal section of the module.

The merging of signals caused by a join may introduce non-obvious inconsistencies in

the connection of modules. These inconsistencies are reported upon execution of the join.

join_statement :=

join [hierarchical.name_list] ;

Note that the square brackets above do not indicate an optional argument.

Example:

module m7

signals

sl s2 s3

component s

join [sl s2];

join [s2 s3];
end

The first join merges signals "sl" and %2". The second merges the signal "s3"

with the signal which is the join of '%1" and '%2".

Error Statement

Error allows the user to print a message during tile course of module generation. The

message is a single string (no variables), and is designed mainly for identifying situations
that should not occur.

error_statement :=

error string_token ;

Execution of error causes activation of an error message with the error flag mask acti-

vated. The error mask value is given in appendix D. These messages may be suppressed or

may cause program termination by options in the simrc file.

Grouping Statement

Grouping allows multiple component statements to act as a single statement lexically. This

allows multiple statements to be used as targets in if, for and while statements. Grouping
has no affect in other contexts.

grouping_statement :=

{ component..statement..list }

Note that there is no semicolon following the grouping statement.

Grouping does not affect the lexical scope of any variable.

16

If Statement

If allows conditional execution of a statement depending on the result of a logical expression.

Multiple statements may be executed by the use of grouping.

if..statement :=

if log_expr component_statement [else component_statement] ;

If executes the first component statement when the logical expression is TRUE. When the

logical expression is FALSE, the second component statement (in the optional else clause)
is executed if available.

For Statement

For executes a statement a specified number of times. Multiple statements may be executed

by the use of grouping.

For evaluates two bounding expressions once to find the inclusive range for its loop

control varable. The target statement is then repeatedly executed with the loop variable

set to each value in the range. The loop variable is initially set to the value of the first

expression. If the first expression is less than the second expression, the loop variable is

incremented by one after each iteration; otherwise the variable is decremented by one.

The loop variable is not allowed to be a input or an assignment variable, and may not

be assigned within the loop. This guarantees termination of for.

for_statement :=

for string_token -- arith_expr , arith_expr component_statement

While Statement

While executes a statement as long as a logical expression remains TRUE. Multiple state-

ments may be executed by the use of grouping.

While first evaluates the controlling logical expression. If it is TRUE, the target state-

ment is executed, and while is reexecuted. If it is FALSE, execution continues at the

statement immediately following the while.

Termination of while is not guaranteed. There is no check for non-termination.

while_statement :=

while log_expr component_statement

Break Statement

Break is used to halt processing of for and while statements. Break disregards pend-

ing statements in the current target component, and continues execution at the statement

17

immediately following the current for or while statement.

Break takes an argument which is the number of nested loops to break. A nonpositive

argument has no effect. If the argument is larger than the number of nested loops, creation

of the module is completed at the break. Break does not affect parent modules.

break_statement :=

break arith_expr ;

18

Chapter 3

Command Syntax

The command syntax controls what actions are taken. These commands control the defini-

tion and execution of circuit models.

Commands are normally read from standard input. They may be directed from a file by

using an input flag or a command statement.

3.1 Filenames

A special syntax is accepted to facilitate the use of filenames. Filenames are allowed to

be string tokens separated by periods '. '. This allows specification of most local filenames

without having to use quoted strings.

file..name :=

string_token

]string_token . file..name

Quoted strings must be used in order to use the UNIX directory structure.

3.2 Current Generated Module

The name of the last generated module to be referenced is saved. This is known as the

current generated module. The current generated module is used when commands are issued

which omit the optional module name. The current generated module is automatically set

by generate, and may be changed using set.

19

3.3 Current Submodule

Each generated module has a single current submodule. The current submodule is used as

a shorthand notation for a single submodule in each generated module. This allows simple

reference to the submodule during testing.

The current submodule is referenced by beginning a command name with character '©'.

The current submodule of a simulation instance is initially the top level module generated.

It may be changed using set.

3.4 Parent Constructor

The command naming syntax contains a parent constructor _''. As each field is read in the

left-to-right expansion of a hierarchical name, the partial name corresponds to an object in

the current module. When the parent constructor is read, the new object referenced by the

partial name is set to the parent of the current object.

The parent constructor is usually used in conjunction with the current submodule '_'.

Use of the parent constructor _" with an array of child modules may cause problems.

3.5 Command Naming

Names in the command syntax are similar to hierarchical names in definitions. There are

additional rules which apply to command names:

• The name of the current generated module or the current submodule identifier '¢' must
be the first field in the hierarchical name.

• There is a parent constructor '_' which changes the target to the parent of the current

target.

We now define an object name in the command syntax.

command_object :=

@

I string_token

I¢ . command_object_tail

I string_token . command_object_tail

2O

command_object..tail :=

[object_name

1" • command_object_tail

[object_.name . command_object_tail

We also define a list of command objects defined by array expansion. This corresponds

to the hierarchical list in the definition syntax.

commandAist :=

@

[string_token

1_ . commandAist_tail

[string_token . commandAist_tail

commandAist_tail :=

[object_name

]object_list

[" . commandAist_tail

[object..name . commandAist_tail

I objectAist . commandAist_tail

Finally, a general
also a command list.

command_objectAist :=

commandAist

[commandAist command_object_list

list of command names is defined. Note that every command object is

21

3.6 Design Tool Commands

command_statement :=

:ource_statement

read_statement

close..statement

pause_statement

repeat_statement

generate_statement
run_statement

reset_statement

save_statement

load_statement

destroy_statement
clear_statement

set_statement

assignment _statement

trap_statement

untrap_statelnent
show_statement

showvector_st atement

showmessage_st atement
showtime_statement

add_statement

showlist_statement

display.statement

undisplay_st atement
timed_statement

quit-statement

$ read in a definition file

$ read commands from a file

$ close an open command file

$ transfer control

$ loop read a command file

$ generate a module for simulation

$ sinmlate a generated module

$ reset signals in a generated module
$ save current simulation state to a file

$ load simulation state from a file

$ destroy a generated module

$ clear all current definitions

$ set options

$ assign values to signMs

$ set conditions to halt simulation

$ remove halting conditions

$ display signal vectors

$ display signal vectors as a group

$ display a message

$ display the current simulation time

$ add signals to a display list

$ display signals in the display list

$ enable printing of changed signals

$ disable signal printing

$ execute a command during simulation

$ exit the program

Source Statement

Source reads a file of module definitions. The entire file is read using the stated definition

language rules. Module syntax is checked as the definition file is read. Definitions are checked

for consistency only when referenced by a generate.

source_statement :=

source file_alame ;

If source causes redefinition of a module, the new definition will be used for future module

definition instances (not sinmlation instances). Previously defined instances will continue to

use the old definition. Module redefinition not recommended.

22

Read Statement

Read causes commands to be read from a file. The file is read until the end-of-file is

reached, or a pause is executed in the file. Commands are again read from the current

source following exit from the named file.

read_statement :=

read [file_name] ;

If the filename is omitted, the last open file read is used.

The file is closed after a read if the entire file has been read. If the named file is already

open, read continues at the current position in the file.

Close Statement

Close closes a file left open by a previous read. This allows a file containing a pause to be

reread from the beginning of the file.

close_statement :=

close [file..name] ;

If the filename is omitted, the last open file read is closed.

Pause Statement

Pause stops reading of the current source of command input. Command input is then read

from the previous source.

pause_statement :=

pause ;

A Pause in a command file causes reading of the file to stop. The file is kept open, and

a subsequent read will continue at the command following the pause. In the interactive

(top) level, pause exits the design tool.

Repeat Statement

Repeat causes repetitive reading of a command file until a test passes.

value as a test for completion once each time the file is read.

There are two versions of repeat: while and until.

It reads a signal

While checks the signal before reading the file, Execution continues as long as

the signal value is logical high.

Until reads the file before checking the test signal. It continues execution as

long as the value is not logical high. Until always reads the file at least once.

23

Note that the two versions use inverse testing conditions.

repeat_statement :=

repeat file_uame while command_signal ; $ check before loop

I repeat file_name until command_signal ; $ check after loop

If multiple tests are needed for the halting condition, the circuit nmst be designed in

hardware.

There is no check for termination of repeat statements.

Calling repeat on files which contain the pause command should be done with caution.

Generate Statement

Generate creates a simulation instance of a module definition. The module should have been

previously read using a source. The sinmlation model is used to test correctness of designs.

Generating a module causes all consistency checks on submodule use to be performed. The

consistency rules have been stated along with the definition syntax.

Each generated module is set to a special initial state in wlfich all non-constant signals
are set to the undefined value.

Gereration of a module causes it to become the current generated module.

generate_statement :=

generate string_token [(argument_list)] ;

The string token specifies the name of the module to be generated. The module name

will be used to reference the simulation instance. There is no way to distinguish between two

instances of the same module. The argument list is a list of integers which must correspond

to the input variables of the module.

Run Statement

Run executes a simulation run of a generated module. Events queued for the module are

evaluated until all events have been processed or a halt command has been issued. Run is

detailed in section 4.

run_statement :=

run [string_token] ;

The string token specifies the generated module to be run. If omitted, the current

generated module is run.

A simulation run may be aborted by an interrupt signal (control-C). Such an interrupt

sets command input to the interactive level, or exits the design tool if it is being run in batch

mode. Aborting a simulation run does not affect pending events.

24

Reset Statement

Reset causes a generated module to be set to its special initial state. Pending events are

removed from the event queue, then non-constant signals are set to the unknown value.

reset_statement :=

reset [string_token] ;

The string token specifies the generated module to be reset. If omitted, the current

generated module is reset.

Save Statement

Save saves the state of the current generated module to a file. A new file with the given

filename is created and the current state is saved. The save file consists of ordered listings

of signal values, but does not specify corresponding signal names.

save_statement :=

save [filemame] ;

Load Statement

Load sets the state of the current generated module using a file previously created using

save. The current generated module must be the same type as the saved module.

load_statement :=

load [file_.name] ;

The only verification of the module type is that the length and number of signal value
lists are correct.

Destroy Statement

Destroy frees a generated module which is no longer needed. Destroying a module does not

affect any other generated modulcs or any definitions.

destroy_statement :=

destroy [string_token] ;

The string token specifies the generated module to be destroyed. If omitted, the current

generated module is destroyed.

If the current generated module is destroyed, it will be ill-defined until reset by a set or

generate.

25

Clear Statement

Clear deletes all definitions and simulation instances.

design tool.

clear_statement :=

clear ;

This is equivalent to restarting the

Set Statement

Set is used to change settings in the design tool. Things changed by the set command include

the current generated module, the current submodule (of the current generated module), and

flags for signal display and output verbosity.

• The current generated module is used when the module name is not specified in a

COIIIlYI a, nd,

• The current submodule is used as the initial path object in command names which use

'_' as the initial field.

The signal display flag is set using display and reset using undisplay. When the

display flag is set, each signal prints its state whenever it changes value. The flag is

initially reset.

Output verbosity is set using verbose and reset using brief. Verbosity controls the

amount of information printed as commands are executed. The flag is initially set.

set_statement :=

set simulation string_token ;

I set _ command_object ;

I set display ;

I set undisplay ;

I set brief ;

I set verbose ;

In the first variation, the string token refers to a simulation instance. This instance

becomes the current generated module.

In the second, the new current submodule '¢' is specified by the command object. The

command object must be a module, not a signal or cable. The previous value of '¢' may be

used to specify the new object.

The flag set by the display option is independent of those used by the display statement.

Assignment Statement

Assignment sets a signal value in the current generated module. Assignment events are

26

put into the eventqueue of the current generated module. These events are completed on

the next run of the module.

assignment_statement :=

command_signal_list <- numeric_token ;

The command signal list has been described under command naming.

The numeric token may be a value constant, or a binary, octal, hexadecimal, or decimal

number.

A value constant may be one of keywords from the following list. In this case, all signals

in the list are assigned the same value, which is the value corresponding to the keyword.

value_constant :=

LSIG

IHSIG

ITSIG

IUSIG

IXSIG

$ logical low

$ logical high

$ tri-state value

$ undefined

$ bad signal value

Numbers are converted to a binary representation then assigned in order with the least

significant bit assigned to to the rightmost signal. A 0 bit corresponds to logical low, while

1 corresponds to logical high. Only the logical high and low values may be assigned.

The number of bits in a binary, octal, or hexadecimal number must 'match' the number

of signals to be assigned. This means that exactly the minimum number of data bits needed

to assign a value to every signal must be given.

Assignment of a value to a bus is not recommended. Assignment of decimal values to

signal lists longer than 32 bits is not supported. Assignment of values other than logical low

and high is not recommended.

Trap Statement

Trap sets halting conditions for runs of the current generated module. A run of the module

will stop (as if a pause had been issued) if the named signal changes to the specified value.

Traps remain in place until they are taken out with untrap.

trap_statement :=

trap command_signal_list = numerlc_token ;

The command signal list has been described under command naming.

The numeric token (described under assignment) nmst match the length of the command

signal list.

Untrap Statement

Untrap resets halting conditions previously entered by trap. Each trap must be removed

27

explicitly by stating the signal/value pair.

untrap_statement :=

untrap command_signal_list = numericAoken ;

The command signal list has been described under command naming.

The numeric token (described under assignment) must match the length of the command

signal list.

Show Statement

Show prints the value of a list of signals in a generated module.

individually, giving the signal value and time of last change.

A signal may have the following values:

0 logical low

1 logical high
U undefined

X bad signal value

T tri-state value

Each signal is printed

show_statement :=

show command_signal_list ;

Show works differently when used with a bus. If a primitive output port onto the bus

is named, the value of the port is given, otherwise the computed bus value is printed. This

enables all inputs to a bus to be printed, as well as the bus value.

Showvector Statement

Showvector prints a numeric equivalent of the signal values for a list of signals. The list

of values is interpreted as a binary number, with the least significant bit corresponding to

the rightmost element. Logical low corressponds to a 0 bit, while logical high corresponds

to a 1. This is consistent with assignment rules for signals. The resulting composite value

is printed as a decimal number. If any signal in the list has an abnormal value (not logical

low or high), the signals are printed individually using show.

showvector_statement :=

showvector command.signal_list ;

Showvector does not support signal lists containing more than 32 elements.

Showmessage Statement

Showmessage prints a message to simulator output. It takes a single string token and is

designed to show progress through a command file being read.

28

showvector_statement:=
showvector string_token ;

Quoted strings may be used.

Showtime Statement

Showtime prints the current simulation time.

showtime_statement :--

showtime ;

Add Statement

Add appends signals to the show list of the current generated module. The list is initially

empty and can be printed using showlist.

add_statement :---

show command_signalAist ;

There is no way to delete a signal from the show list once it has been added.

Showlist Statement

Showlist prints (using show) the value of all signals in the show list of the current module.

The list is maint_ned using the add command.

showlist_statement :=

showlist ;

Display Statement

Display sets the display flags of a list of signals. A signal with its display flag set prints its

state whenever it changes value. The flag is initially reset for all signals.

display_statement :=

display command_signalAist ;

Display statement flags are independent of the set display flag.

Undisplay Statement

Undisplay resets the display flags of a list of signals. The flag is intially reset for all signals,

and may be set using the display statement.

29

undisplay_statement:=
undisplay command_signal_list;

Display statement flagsare independentof the set display flag.

Timed Statement

Timed statements store commands in the event queue of a generated module for execution

during a run. Only assignment and pause statements may be used as timed statements.

Timed statements have an initial argument which is the amount of simulation time to pass

before the statement is executed. They are put into the event queue for execution.

timed_statement :=

numeric_token : assignment_statement

]numeric_token : pause_statement

pause functions differently when used as a timed statement. A timed pause halts the

current simulation run, returning control to the command level which initiated the run (not

necessarily the level which inserted the pause). This is similar to halting a run via an

interrupt. The assignment statement functions normally.

Timed statements compute their target signals before being entered in the event queue.

The present value of the current submodule is used for decoding '_'.

Quit Statement

Quit causes normal termination of the design tool. No state is retained between executions.

quit_statement :=

quit ;

3O

Chapter 4

Implementation Details

A simulation run iteratively executes primitive modules affected by changes to their input

signals, then updates the value of their output signals. This continues until the simulation

instaxtce reaches a steady state, or a halt command is processed.

Each event in a simulation instance has an associated integer processing time. Events

with the same processing time are completed in a single time step, and are processed before

any event with a greater processing time. The last processing time executed is known as the

current processing time. Simulating in time steps allows the current processing time to serve
as an indicator of the amount of time a circuit takes to execute.

Following are specific implementation details of the design tool:

4.1 Primitive Modules

Primitive modules perform functions predetermined by C code. These modules have a

uniform delay characteristic 6 >_ 1, meaning that a change on any of its inputs causes a

change in its outputs exactly 5 time units in the future.

The delay characteristic must be positive to satisfy the processing time requirement.

Uniformity ensures consistency in the output of a primitive module. Uniformity is needed

because the simulation model does not throw out events. If the delay characteristic was

nonuniform, a single module could cause schedule signal value changes on the same wire out
of order.

4.2 Simulation Construction

To speed simulation, generated modules are flattened. Flattening removes the definition

hierarchy from a simulation instance. Only instances of primitive modules and connections

between them remain after flattening. This speeds execution, since the definition hierarchy

31

is not traversedduring sinmlation. Flattening constructsconnectionlists for eachsignal that
specifywhich primitive instancesaffect it and are affectedby it.

The definition hierarchy is retained and is used to reference the flattened structure.

4.3 Bus Signals

Bus signals, which are driven by tri-state drivers, are built in a special way. Each primitive

module on a bus writes to a specific entry point, similar to a port of a module. The bus

value is calculated based on the values of its entry points. Every primitive module reading

from the bus gets the calculated bus value.

Busses also have special handling for printing. A bus name which corresponds to an

output of a primitive module prints information about the corresponding entry point. Any

other name corresponding to the bus prints information about the calculated bus value. This

allows for easier examination of busses.

4.4 Simulation Events

In order to satisfy the processing time requirement, events are stored in and read from a

priority queue. This is implemented in the design tool by a heap.

The queue contains three types of events: signal value, printing and halting.

• Signal value events specify changes in the value of a signal. These events cause affected

primitive modules to be executed.

• Printing events cause printing of signal information.

• Halting events stop execution of a simulation run following the current time step,

instead of waiting until stable state.

Events may be created by a conlmand statement, or as an effect of executing a primitive
module.

4.5 Simulation Runs

Each simulation run reads and processes events until all events have been processed or a

halting command has been processed.

Each time step of the run is conducted in phases.

1. All current events are extracted from the priority queue.

32

. Signal value events cause the target signal to be immediately updated. Each

update causes connected busses and primitive modules to be scheduled for eval-

uation. Modules and busses are kept in separate evaluation lists. If a signal is

updated more than once in a single time unit, an error message is printed.

• Printing events get stored in a list for later processing.

• A halting command sets a flag to exit the simulation run following the current
time unit.

2. Busses scheduled in the first phase are evaluated, based on the value of all signals

connected to it. This may cause schedule additional primitive modules for evaluation.

3. Each primitive module in the evaluation list is processed. The C code for each affected

module is executed. This may change internal state and may schedule additional

simulation events. Because of the delay characteristic of primitive modules, events are

always scheduled for a later processing time.

4. Printing commands are executed. This shows the signal state at the end of the current

processing time.

After these phases are completed, the simulation stops if the halting flag is set. Otherwise,

the next time step is processed.

33

Chapter 5

Startup Options

The design tool has a number of options which are set at the beginning of execution. These

are separate from command statements and do not change during execution. The options

control general input and output characteristics of the design tool.

Commands are normally read from stdin and output written to stdout. Error messages

are directed to stderr. Input and output may be redirected by using startup options. Error

messages may not be redirected.

5.1 Command-line Arguments

A number of options may be set upon execution of the design tool.

sim [option_.list]

Acceptable command line options are:

-i <filename> Read commands fl'om the named file instead of stdin. This causes batch

mode, instead of interactive, execution.

-o <filename> Direct output messages to the named file instead of stdout. An output

file should be specified only when in batch mode (-i).

-s Print information on all signals when generating modules. These messages are useful in

circuit design verification.

-ns Only print information about signals which have bad drive/load ratios. This is the

opposite of-s.

-b Run code to inspect bus loads. The design tool passes load through transmission gates

to give a different description of the load on module outputs.

-nb Do not inspect bus loads. This is the opposite of-b.

34

5.2 simrc File

Upon startup, information is read from a file named simre, which should be in the current

directory upon program execution, simrc is read before the command line arguments are

interpreted, so it can be used to change default switch values for signal printing and bus

load computation.

Comments in simrc are specified by the pound sign _#', similar to other syntax rules.

Numbers in simrc are interpreted using the C %trtol" function. These do not conform to

the conventions used in other parts of the design tool.

There are four options which may be specified in simrc:

Signal Printing

Information on all signals are printed when the keyword print_signals is specified. This is

the same as using the -s command-line argument.

Bus Load

Additional bus load computation may be selected by using the keyword print_busses. This

is the same as using the -b command-line argument.

Fanout

Fanout is a crude measure of the drive/load ratio on signals. Signals with large numbers of

inputs or outputs are more likely to have load problems. A rough estimate of signal load is

produced by comparing the number of inputs and outputs of each signal to a user-specified

number. A warning message is printed for each signal which has a fan-in or fan-out greater

than the fanout value.

The fanout value is specified with the keyword max_fan, followed by an integer. The

number should use C syntax.

Error Printing

Error messages may be supressed by specification of an error printing mask. Only errors

specified by the mask get printed. The list of error types and their corresponding mask

numbers are shown in appendix D.

The error printing mask is specified with the keyword print_mask, followed by an integer.

The nmnber should use C syntax.

35

Error Halting

Specified errors can force termination of the design tool by use of an error halting mask.

Encountering an error specified by the mask causes the design tool to exit. The list of error

types and their corresponding mask numbers are shown in the appendix D.

The error halting mask is specified with the keyword halt_mask_ followed by an integer.

The number should use C syntax.

Errors specified by the halting mask always print before exiting, even when not specified

by the printing mask.

36

Appendix A

The Lexer

A lexer is used to convert input into tokens.

The lexer recognizes four primary types of tokens:

single character tokens

string tokens

reserved words

numeric tokens

The lexer uses spacing characters (space, tab, newline) to separate tokens, but they are

not passed along.

Comments

The character '#' is used to signify a comment. When a comment character is read, the

remainder of the input line (until the next newline) is disregarded. Commenting does not

work within a quoted string.

Single Character Tokens

The single characters tokens recognized by the lexer are:

')', '[', '2', '<', '}' '-', '÷', '.',

,/,, ,%,, ,,., ,¢,, 4-,, '1', '_'

Single character tokens do not need to be separated from other tokens by spacing char-

acters.

Non-alphanumeric characters which are not single character tokens or one of the special

characters __', '#', and _"' are disregarded.

37

String Tokens

The lexer recognizestwo types of string tokens: quoted and unquoted.

An unquoted string consists of an initial alphabetic character or underscore '' followed

by any number of alphanumeric characters or underscores. Unquoted strings are checked

against the list of reserved words. If an unquoted string matches a reserved word, it is

passed to the simulator as the reserved word token.

A quoted string is a succesion of characters enclosed within two delimiting quote symbols

'"' Quoted strings allow acceptance of strings which do not qualify as unquoted strings. This

is used for filenames and message printing. A quoted string may not cross a line boundary.

Quoted strings are not checked against reserved words, so they are always passed as string

tokens.

Here is the string syntax given as regular expressions:

unquoted_string := [a-zA-Z_] [a-zA-Z_0-9]*

quoted_string := "?*"

In the regular expressions, square brackets denote a choice between characters. '?' rep-

resents any single character. '*' means a sequence of zero or more of the previous character

or choice of characters.

There is currently no way to pass a string containing the newline character.

Reserved Words

Reserved words are strings which have special meaning in the design tool. Each unquoted

string read by the lexer is checked against the list of reserved words. If a string matches a

reserved word, it is passed as the reserved word.

There are two categories of reserved words. The first is used when reading definitions,

the other when reading commands.

38

Reserved Definition Words:

break cable cmos components cost

else end error for gateInputs

if inout input join module

nmos output ports signals ts_inout

ts_output while

Reserved Command Words:

HSIG LSIG TSIG USIG XSIG

add brief clear close destroy

display generate load pause read

repeat reset run save set

show showlist showmessage showtime showvector

simulation source trap undisplay until

untrap verbose while

Numeric Tokens

Four types of numeric tokens are recognized by the lexer: binary, octal, decimal, and hex-

adecimal. These correspond to numbers in base 2, 8, 10, and 16 respectively.

Binary, octal, and hexadecimal numbers have '0' as their initial character. The second

character specifies the base of the number.

• 'b' or 'B' specifies a binary number. This is followed by a sequence of the characters

_0'or _I_.

'o' or '0' specifies an octal nunlber. This is followed by a sequence which may contain

characters corresponding to the numbers 0-8.

'x' or 'X' specifies a hexadecimal number. This is followed by a sequence which may

contain characters corresponding to the numbers 0-9 or alphanumeric characters in the

range a-f (upper or lower case). The characters a-f represent the decimal values 10-15

respectively.

If the second character does not fall into the above categories or if the leading character

is a number which is not '0', the numeric token is a decimal number. A decimal number is

a sequence of characters, each of which corresponds to a number in the range 0-9.

Each syntax is repeated below as a regular expression.

binary_number := 0 [bB] [01] *
octal._number := 0 [o0] [0-8] *

hexadecimal_number := 0[xX] [0-9a-fA-F]*

decima/_number := [0-9] [0-9]*

In the regular expressions, square brackets denote a choice between characters. '*' means

a sequence of zero or more of the previous character or choice of characters.

39

All types of numeric tokens are interpreted as having the most significant digit on the
left.

40

Appendix B

Primitive Modules

This appendix contains the current list of predefined primitive modules. Each primitive is

shown as a module definition, with associated costs, and is accompanied by a short descrip-

tion.

Improper input values to primitive modules cause uncertain results to occur. These

results should not be relied upon. The following rules generally apply:

* bad signal values propagate.

• If no bad signals are present, undefined signals propagate.

• If no bad signals are present, tri-state signals cause undefined output.

Because primitive modules are specially defined, some of their functions cannot be re-

produced by general composite modules.

Constant

const allows signals to be hooked to a constant source. The input argument becomes the

source value. Valid argument values are '0' (logical low) and '1' (logical high). Use of other
values is not recommended.

Constant values cause attached modules to execute on the first run following module

generation and after a simulation instance has been reset.

module const(v)

the constant has zero costs

cost nmos: 0 cmos: 0 gateInputs:

ports

v output
end

0

41

Inverter

inv does a logical inversion of the input signal.

and high.

• If "a" is low, "x" is set to high.

• If '%" is high, "x" is set to low.

Valid input values for "a" are logical low

module inv

cost nmos: 2

ports

a input

x output

end

cmos: 2 gatelnputs: I

Logical NAND

hand computes the logical NAND of the input signals. Valid input values for the inputs "a"

and "b" are logical low and high.

• If either signal is low, "x" is set to high.

• If both signals are high, "x" is set to low.

module nand

cost nmos: 3

ports

a input

b input

x output

end

cmos: 4 gatelnputs: 2

Logical NOR

nor computes the logical NOR of the input signals.

and "b" are logical low and high.

• If either signal is high, "x" is set to low.

• If both signals are low, "x" is set to high.

Valid input values for the inputs "a"

42

module nor

cost nmos: 3

ports

a input

b input

x output

end

cmos: 4 gateInputs: 2

Delay

delay simply propagates a signal value with a time delay. The output signal is set to the

input signal, regardless of the value. The input argument is the time to delay the output,

which must be a positive number.

The cost of a delay is represented as a pair of inverters.

module delay(delta)

cost nmos: 4 cmos:

ports

d input

q output

end

4 gatelnputs: i

Transmission Gate

trans_gate sets the output "q" to the value of the input "d" when enabled with the enable

signals "el" and "e2". When not enabled, "q" is set to the tri-state value. The transmission

gate is a dual-rall model, which means %1" should always be the logical inverse of "e2".

• When "el" is high ("e2" is low), "q" gets the value of "d".

• When "el" is low ("e2" is high), "q" gets the tri-state value.

"q" must be hooked to a bus signal. This means that all ports which output to the bus

must be typed as tri-state. In particular, only trans_gate outputs and SRAM data lines

may output to the same signal as "q".

module trans_gat e

cost nmos: i cmos: 2

ports

d input

el input

e2 input

end

q ts_output

gateInputs : 2

43

Positive Latch

posLatch is a single bit of non-volatile memory. It uses "1" to control when data is read

into memory from "d". The value in memory is output through "Q".

• When 'T' is low, the latch holds state.

• When 'T' is high, the memory value (and "Q") is set to the value of "d".

module posLatch

cost nmos: 8 cmos:

ports

d input

1 input

q output

end

I0

Negative Latch

negLatch is a single bit of non-volatile memory. It uses 'T' to control when data is read

into memory from "d". It is called a negative latch (as opposed to positive latch) because

the sense of the latch signal "l" is reversed. The value in memory is output through "Q".

• When "l" is low, the memory value (and "Q") is set to the value of "d".

• When 'T' is high, the latch holds state.

module negLatch

cost nmos: 8 cmos: 10

ports

d input

Ib input

Q output

end

Fan_out

fan_out propagates a signal value with a time delay, similar to a delay module. The output

signal is set to the input signal. The first argument is the number of inverters which can be

driven by the output of the fan-out module. The second argument is the time the output is

delayed after the input. Both arguments must be positive numbers.

fan_out is intended to be used in a composite design, along with externally specified

costs, to simplify simulation of a fan-out structure.

44

module fan_out(no,

cost nmos: 0 cmos:

ports

i input

0 output

end

delta)

0 gateInputs: 0

Two_way_fan _out

two_way_fan_out, like fan_out, is used to drive multiple outputs from a single signal. This

design allows the use of both the signal and its inverse as drivers. The first argument is the

number of inverters which can be driven by the non-inverted output line of the module. The

second argument is the number of inverters which can be driven by the inverted output line

of the fan-out module. The last argument is the time the outputs are delayed after the input.

Both outputs use the same delay characteristic. All arguments must be positive numbers.

two_way_fan_out is intended to be used in a composite design, along with externally

specified costs, to simplify simulation of a fan-out structure.

module two_way_fan_out(nuo, nio, delta)

cost nmos: 0 cmos: 0 gateInputs: 0

ports

i input

0 output

O_b output

end

Static RAM

SRAM is memory for simulation instances. A static RAM module takes two arguments:

the amount of memory and the number of bits in the word. It reads and stores data in

addressable memory based on its control signals "rw" and "e". "e" enables the RAM for an

operation, and "rw" selects whether the operation reads from or writes to memory.

• If "e" is low, the memory does nothing.

• If "e" is high, the memory does the specified operation.

• If "rw" is low, the operation is a write.

• If "rw" is high, the operation is a read.

The signals in "D" must be hooked to busses. This means all ports which output to each

bus must be typed as tri-state. In particular, only trans_gate outputs and other SRAM

data lines may output to those busses.

45

There is currently no way to preloaddata into the memory. All data must be written to

memory before it is used.

Data widths larger than 32 bits are not supported.

module SRAM(amount, width)

ports

rw input

e input

A [I:amount] input

D [I :width] ts_inout

end

Dynamic Memory Test

D_test is used to simulate dynamic RAM in conjunction with the static RAM module

SRAM. It keeps track of the last time data was written to the address, however D_test

does not actually store the data. If data is used too long after it has last been written, an

error message is generated.

The "rw" and "e" lines work as described for the static RAM.

module D_test (amount)

port s

rw input

e input

A [i :amount] input

end

46

Appendix C

Module Examples

This section contains two simple examples which demonstrate certain features in the defini-

tion language. The examples have not been optimized.

The first example is a scalable multi-input OR. It is constructed using a two-input OR,

which in turn is built from primitives nor (logical NOR) and inv (inverter). The multi-input

OR uses recursion to construct a collection tree. This results in an O(tog(k)) running time

as opposed to O(k) time for a chain.

module two_input_OR

ports

x y input

z output

signals

z_bar

components

xy_nor nor

z_comp inv

end

x y z_bar;

z_bar z;

module k_input_0R(k)

compute a multi-input 0R by recursion

ports

x[l:k] input

z output

signals

zl z2 # internal signals for split

components

if {k = I} {

join [x[l]

break (I) ;

}

z]; # connect input to output

end current module; halt recursion

47

compute split information

kl <- k/2;

k2 <- k - kl;

split in half and recurse on both parts.

zl_comp k_input_OR(ki) x[l:kl] zl;

z2_comp k_input_0R (k2) x [kl+l :k] z2 ;

recombine parts

z_comp two_input_0R

end

zl z2 z;

This example uses recursion to split the tree into two subtrees, and a two_input_OR to

recombine the subtrees. Recursion is halted when the subtree has only a single input. This

is done by using break to end the module definition.

The second example is a variable length MIN circuit. It uses a for loop to join a chain

of single-bit MIN modules.

module two_input_AND

ports

x y input

z output

signals

z_bar

components

xy_nand hand

z_comp inv

end

x y z_bar;

z_bar z;

module a_gre_b

set z to one if a is greater than b

ports

a b input

z output

signals

b_bar

components

b_inv inv

end

b b_bar;

z_comp two_input_AND a b_bar z;

((a = i) (b = 0))

module MIN

48

compute MIN based on input values and selection inputs

compute selection outputs for chaining

(sxi = I) -> choose x as the MIN

(syi = I) -> choose y as the MIN

sxi = syi = I is an impossible state

ports

x y input

z output

sxi syi input

sxo syo output

signals

zl z2 z3

sxi_bar syi_bar

x_gre_y y_gre_x

sxo_e syo_e

components

compute the min value z

x_sel two_input_AND

y_sel two_input_AND

xy_and two_input_AND

z_comp k_input_0R(3)

select control input

select control output

used to find out which data input is greater

contains new select information

x sxi zl;

y syi z2;

x y z3;

zl z2 z3 z;

sxi_inv inv sxi sxi_bar;

syi_inv inv syi syi_bar;

check if values are not equal

x_gre_y_comp a_gre_b x y x_gre_y;

y_gre_x comp a_gre b y x y_gre x;

compute new select information

sxo_e_comp two_input_AND y_gre_x syi_bar

syo_e_comp two_input_AND x_gre_y sxi_bar

sxo_e;

syo_e;

compute output selects

sxo_comp two_input_0R

syo_comp two_input_0R

end

sxi sxo_e sxo;

syi syo_e syo;

MIN uses information from the input select lines or by comparing the two signals x and

y to compute the output z and the output select lines. Note that reversing the order of

signals connected to the ports of the circuit a_gre_b changes its function.

module k_bit_MIN(k)

compute a variable length MIN circuit by iteration of

49

a chainable single bit MIN

ports

x[1:k] y[l:k] input

z[l:k] output

signals

sx[O:k] sy[O:k] low

component s

Turn off initial select

low_gen const (0) low;

join [low sx[O] sy[O]];

signals

Chain MIN circuits together

for i = 1,k

bit[i] MIN x[i] y[i] z[i]

end

sx[i-l] sy[i-1] sx[i] sy[i] ;

The chain is initialized by connecting the first set of select inputs to the low signal. The

last set of select outputs is left unconnected.

5O

Appendix D

Error Messages

Error messages each have an associated field which describes its type. The error type is used

to identify groups of messages for special consideration. Upon startup, a print mask and

a halt mask are read from the simrc file. The print mask specifies error types which are

printed. The halt mask specifies error types which halt design tool execution. Each message

that halts execution is automatically printed.

Following is a list
an octal constant.

O00001L

000002L

O00004L

O00010L

O00020L

O00040L

O00100L

O00200L

O00400L

O01000L

O02000L

O04000L

OIO000L

020000L

of error masks and their associated groupings. Each mask is given as

Race condition during a simulation run

Corrected parsing error

Warning
Redefinition of a cable or module

Reference to undefined cable or module

Conflicting definitions

Uncorrectable parsing error

Module generation halted

Error in primitive module
Bad data found

Error statement executed

Memory allocation error

Error external to program

Inconsistency in program

51

